Mean Calculator

Calculate All Binary Photo

Mean Calculator

Math Calculators
  • 18
  • 734
  • 4 min
  • 0

What is Arithmetic Mean?

For a data set, the arithmetic mean, also called the expected value or average, is the central value of a discrete set of numbers: specifically, the sum of the values divided by the number of values.

In probability and statistics, the population mean, or expected value, is a measure of the central tendency either of a probability distribution or of the random variable characterized by that distribution. In a discrete probability distribution of a random variable X, the mean is equal to the sum over every possible value weighted by the probability of that value; that is, it is computed by taking the product of each possible value x of X and its probability p(x), and then adding all these products together, giving:

​​​​µ = ∑ xp(x)

An analogous formula applies to the case of a continuous probability distribution. Moreover, the mean can be infinite for some distributions.

For a finite population, the population mean of a property is equal to the arithmetic mean of the given property, while considering every member of the population. For example, the population mean height is equal to the sum of the heights of every individual—divided by the total number of individuals. The sample mean may differ from the population mean, especially for small samples. The law of large numbers states that the larger the size of the sample, the more likely it is that the sample mean will be close to the population mean.

You can also check:

In descriptive statistics, the mean may be confused with the median, mode or mid-range, as any of these may be called an "average" (more formally, a measure of central tendency). The mean of a set of observations is the arithmetic average of the values; however, for skewed distributions, the mean is not necessarily the same as the middle value (median), or the most likely value (mode). For example, mean income is typically skewed upwards by a small number of people with very large incomes, so that the majority have an income lower than the mean. By contrast, the median income is the level at which half the population is below and half is above. The mode income is the most likely income and favors the larger number of people with lower incomes. While the median and mode are often more intuitive measures for such skewed data, many skewed distributions are in fact best described by their mean, including the exponential and Poisson distributions.

Truncated Mean

Sometimes, a set of numbers might contain outliers (i.e., data values which are much lower or much higher than the others). Often, outliers are erroneous data caused by artifacts. In this case, one can use a truncated mean. It involves discarding given parts of the data at the top or the bottom end, typically an equal amount at each end and then taking the arithmetic mean of the remaining data. The number of values removed is indicated as a percentage of the total number of values.

Mean of Angles and Cyclical Quantities

Angles, times of day and other cyclical quantities require modular arithmetic to add and otherwise combine numbers. In all these situations, there will not be a unique mean. For example, the times an hour before and after midnight are equidistant to both midnight and noon. It is also possible that no mean exists. Consider a color wheel—there is no mean to the set of all colors. In these situations, you must decide which mean is most useful. You can do this by adjusting the values before averaging, or by using a specialized approach for the mean of circular quantities.

Fréchet Mean

The Fréchet mean gives a manner for determining the "center" of a mass distribution on a surface or, more generally, Riemannian manifold. Unlike many other means, the Fréchet mean is defined on a space whose elements cannot necessarily be added together or multiplied by scalars. It is sometimes also known as the Karcher mean (named after Hermann Karcher).

Some other arithmetic means include:

  • Arithmetic-geometric mean
  • Arithmetic-harmonic mean
  • Cesàro mean
  • Chisini mean
  • Contraharmonic mean
  • Elementary symmetric mean
  • Geometric-harmonic mean
  • Grand mean
  • Heinz mean
  • Heronian mean
  • Identric mean
  • Lehmer mean
  • Logarithmic mean
  • Moving average
  • Neuman–Sándor mean
  • Quasi-arithmetic mean
  • Root mean square (quadratic mean)
  • Rényi's entropy (a generalized f-mean)
  • Spherical mean
  • Stolarsky mean
  • Weighted geometric mean
  • Weighted harmonic mean

Comments (0)